A. David McGuire, Leif G. Anderson, Torben R. Christensen, Scott Dallimore, Laodong Guo, Daniel J. Hayes, Martin Heimann, Thomas D. Lorenson, Robie W. Macdonald and Nigel Roulet. (2009). Sensitivity of the Carbon Cycle in the Arctic to Climate Change. Ecological Monographs, 79(4), 523–555. http://www.jstor.org/stable/40385226
Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology & Evolution, 7(7), 220–224. https://doi.org/10.1016/0169-5347(92)90048-G
Ågren, G. I., & Andersson, F. (2012). Terrestrial ecosystem ecology: principles and applications. Cambridge University Press.
Andrews, J. A., & Schlesinger, W. H. (2001). Soil CO dynamics, acidification, and chemical weathering in a temperate forest with experimental CO enrichment. Global Biogeochemical Cycles, 15(1), 149–162. https://doi.org/10.1029/2000GB001278
Ashman, M. R., Puri, G., & MyiLibrary. (2002). Essential soil science: a clear and concise introduction to soil science [Electronic resource]. Blackwell Science. http://www.myilibrary.com?id=211757
Baath, E., & Wallander, H. (2003). Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system. Global Change Biology, 9(12), 1788–1791. https://doi.org/10.1046/j.1365-2486.2003.00692.x
Bardgett, R. D. (2005). The biology of soil: a community and ecosystem approach. Oxford University Press.
Bohn, H. L., O’Connor, G. A., & McNeal, B. L. (1985). Soil chemistry (2nd ed). John Wiley & Sons.
Bormann, B. T., Wang, D., Snyder, M. C., Bormann, F. H., Benoit, G., & April, R. (1998). Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry, 43(2), 129–155. https://doi.org/10.1023/A:1006065620344
Brady, N. C., & Weil, R. R. (1998). The nature and properties of soils (12th ed). Prentice Hall.
Brantley, S. L. (2008). GEOLOGY: Understanding Soil Time. Science, 321(5895), 1454–1455. https://doi.org/10.1126/science.1161132
CONANT, R. T., DRIJBER, R. A., HADDIX, M. L., PARTON, W. J., PAUL, E. A., PLANTE, A. F., SIX, J., & STEINWEG, J. M. (2008). Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology, 14(4), 868–877. https://doi.org/10.1111/j.1365-2486.2008.01541.x
Dawson, J. J. C., & Smith, P. (2007). Carbon losses from soil and its consequences for land-use management. Science of The Total Environment, 382(2–3), 165–190. https://doi.org/10.1016/j.scitotenv.2007.03.023
ebrary, Inc. (1993). Soil and water quality: an agenda for agriculture [Electronic resource]. National Academy Press. http://site.ebrary.com/lib/unnc/Doc?id=10054995
Emmett, B. A., Beier, C., Estiarte, M., Tietema, A., Kristensen, Hanne. L., Williams, D., Pe�uelas, J., Schmidt, I., & Sowerby, A. (2004). The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands Across an Environmental Gradient. Ecosystems, 7(6). https://doi.org/10.1007/s10021-004-0220-x
Evans, C. D., Goodale, C. L., Caporn, S. J. M., Dise, N. B., Emmett, B. A., Fernandez, I. J., Field, C. D., Findlay, S. E. G., Lovett, G. M., Meesenburg, H., Moldan, F., & Sheppard, L. J. (2008). Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments. Biogeochemistry, 91(1), 13–35. https://doi.org/10.1007/s10533-008-9256-x
Farley, K. A., Piñeiro, G., Palmer, S. M., Jobbágy, E. G., & Jackson, R. B. (2008). Stream acidification and base cation losses with grassland afforestation. Water Resources Research, 44(7), n/a-n/a. https://doi.org/10.1029/2007WR006659
Gardiner, D. T., & Miller, R. W. (2004). Soils in our environment (10th ed). Pearson/Prentice Hall.
GERSHENSON, A., BADER, N. E., & CHENG, W. (2009). Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 15(1), 176–183. https://doi.org/10.1111/j.1365-2486.2008.01827.x
Giardina, Christian P. (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404(6780). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=3069988&site=ehost-live
Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8(4), 345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x
HANSEN, K., ROSENQVIST, L., VESTERDAL, L., & GUNDERSEN, P. (2007). Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Global Change Biology, 13(6), 1250–1264. https://doi.org/10.1111/j.1365-2486.2007.01355.x
Haygarth, P. M., Jarvis, S. C., & ebrary, Inc. (2002). Agriculture, hydrology, and water quality [Electronic resource]. CABI. http://site.ebrary.com/lib/unnc/Doc?id=10060479
Haygarth, P. M., & Ritz, K. (2009). The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services. Land Use Policy, 26, S187–S197. https://doi.org/10.1016/j.landusepol.2009.09.016
Hodge, I., & Reader, M. (2010). The introduction of Entry Level Stewardship in England: Extension or dilution in agri-environment policy? Land Use Policy, 27(2), 270–282. https://doi.org/10.1016/j.landusepol.2009.03.005
Jenny, H. (1941). Factors of soil formation: a system of quantitative pedology: Vol. McGraw-Hill publications in the agricultural sciences. McGraw-Hill.
Jobbágy, E. G., & Jackson, R. B. (2003). Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry, 64(2), 205–229. https://doi.org/10.1023/A:1024985629259
Kay, P., Edwards, A. C., & Foulger, M. (2009). A review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industry. Agricultural Systems, 99(2–3), 67–75. https://doi.org/10.1016/j.agsy.2008.10.006
Kirchner, J. W., & Lydersen, Espen. (1995). Base Cation Depletion and Potential Long-Term Acidification of Norwegian Catchments. Environmental Science & Technology, 29(8), 1953–1960. https://doi.org/10.1021/es00008a012
KIRK, G. J. D., BELLAMY, P. H., & LARK, R. M. (2009a). Changes in soil pH across England and Wales in response to decreased acid deposition. Global Change Biology, no-no. https://doi.org/10.1111/j.1365-2486.2009.02135.x
KIRK, G. J. D., BELLAMY, P. H., & LARK, R. M. (2009b). Changes in soil pH across England and Wales in response to decreased acid deposition. Global Change Biology, no-no. https://doi.org/10.1111/j.1365-2486.2009.02135.x
KIRSCHBAUM, M. (2006). The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biology and Biochemistry, 38(9), 2510–2518. https://doi.org/10.1016/j.soilbio.2006.01.030
Kirschbaum, M. U. F. (2000). Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48(1), 21–51. https://doi.org/10.1023/A:1006238902976
L., R., J., C., G., M., R., N., M., M., A., H., J., C., J., G., & Not Available, N. A. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126(4), 543–562. https://doi.org/10.1007/s004420000544
LAGANIÃRE, J., ANGERS, D. A., & PARÃ, D. (2010). Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology, 16(1), 439–453. https://doi.org/10.1111/j.1365-2486.2009.01930.x
Lovett, G. M., & Goodale, C. L. (2011). A New Conceptual Model of Nitrogen Saturation Based on Experimental Nitrogen Addition to an Oak Forest. Ecosystems, 14(4), 615–631. https://doi.org/10.1007/s10021-011-9432-z
Lovett, G. M., Weathers, K. C., Arthur, M. A., & Schultz, J. C. (2004). Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry, 67(3), 289–308. https://doi.org/10.1023/B:BIOG.0000015786.65466.f5
MacDonald, J. A., Dise, N. B., Matzner, E., Armbruster, M., Gundersen, P., & Forsius, M. (2002). Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8(10), 1028–1033. https://doi.org/10.1046/j.1365-2486.2002.00532.x
Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M. E., McDowell, W. H., Melillo, J. M., & Steudler, P. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196(1), 7–28. https://doi.org/10.1016/j.foreco.2004.03.033
McLauchlan, K. K. (2006). Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture. Geoderma, 136(1–2), 289–299. https://doi.org/10.1016/j.geoderma.2006.03.053
MORRIS, S. J., BOHM, S., HAILE-MARIAM, S., & PAUL, E. A. (2007). Evaluation of carbon accrual in afforested agricultural soils. Global Change Biology, 13(6), 1145–1156. https://doi.org/10.1111/j.1365-2486.2007.01359.x
Mörth, C.-M., Torssander, P., Kjønaas, O. J., O Stuanes, A., Moldan, F., & Giesler, R. (2005). Mineralization of Organic Sulfur Delays Recovery from Anthropogenic Acidification. Environmental Science & Technology, 39(14), 5234–5240. https://doi.org/10.1021/es048169q
Nathanail, C. P., & Bardos, P. (2004). Reclamation of contaminated land. Wiley.
National Research Council (U.S.) & ebrary, Inc. (1993). Sustainable agriculture and the environment in the humid tropics [Electronic resource]. National Academy Press. http://site.ebrary.com/lib/unnc/Doc?id=10072116
OH, N.-H., HOFMOCKEL, M., LAVINE, M. L., & RICHTER, D. D. (2007). Did elevated atmospheric CO alter soil mineral weathering?: an analysis of 5-year soil water chemistry data at Duke FACE study. Global Change Biology, 13(12), 2626–2641. https://doi.org/10.1111/j.1365-2486.2007.01452.x
Ostle, N. J., Levy, P. E., Evans, C. D., & Smith, P. (2009). UK land use and soil carbon sequestration. Land Use Policy, 26, S274–S283. https://doi.org/10.1016/j.landusepol.2009.08.006
Palmer, S. M., Driscoll, C. T., & Johnson, C. E. (2004). Long-term trends in soil solution and stream water chemistry at the Hubbard Brook Experimental Forest: relationship with landscape position. Biogeochemistry, 68(1), 51–70. https://doi.org/10.1023/B:BIOG.0000025741.88474.0d
Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6(3), 317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x
Robert L. Crocker and Jack Major. (1955). Soil Development in Relation to Vegetation and Surface Age at Glacier Bay, Alaska. Journal of Ecology, 43(2), 427–448. http://www.jstor.org/stable/10.2307/2257005?origin=crossref&
Robinson, G. M. (2006). Ontario’s Environmental Farm Plan: Evaluation and research agenda. Geoforum, 37(5), 859–873. https://doi.org/10.1016/j.geoforum.2005.05.002
Schaetzl, R. J., & Anderson, S. (2005). Soils: genesis and geomorphology. Cambridge University Press.
Schjønning, P., Elmholt, S., Christensen, B. T., & ebrary, Inc. (2004). Managing soil quality: challenges in modern agriculture [Electronic resource]. CABI Pub. http://site.ebrary.com/lib/unnc/Doc?id=10173496
SMITH, P., POWLSON, D., GLENDINING, M., & SMITH, J. (1997). Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 3(1), 67–79. https://doi.org/10.1046/j.1365-2486.1997.00055.x
Smith, P., Powlson, D. S., Smith, J. U., Falloon, P., & Coleman, K. (2000). Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 6(5), 525–539. https://doi.org/10.1046/j.1365-2486.2000.00331.x
Trumbore, S. E., & Czimczik, C. I. (2008). GEOLOGY: An Uncertain Future for Soil Carbon. Science, 321(5895), 1455–1456. https://doi.org/10.1126/science.1160232
Vesterdal, L., Ritter, E., & Gundersen, P. (2002). Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 169(1–2), 137–147. https://doi.org/10.1016/S0378-1127(02)00304-3
Wall, D. H. (2012). Soil ecology and ecosystem services. Oxford University Press.
Wesselink, L. G., Meiwes, K.-Joseph., Matzner, Egbert., & Stein, Alfred. (1995). Long-Term Changes in Water and Soil Chemistry in Spruce and Beech Forests, Solling, Germany. Environmental Science & Technology, 29(1), 51–58. https://doi.org/10.1021/es00001a006
White, R. E. & MyiLibrary. (2006). Principles and practice of soil science: the soil as a natural resource (4th ed) [Electronic resource]. Blackwell. http://www.myilibrary.com?id=211680
Wright, R. F., Larssen, T., Camarero, L., Cosby, B. J., Ferrier, R. C., Helliwell, R., Forsius, M., Jenkins, A., Kopáěek, J., Majer, V., Moldan, F., Posch, M., Rogora, M., & Schöpp, W. (2005). Recovery of Acidified European Surface Waters. Environmental Science & Technology, 39(3), 64A-72A. https://doi.org/10.1021/es0531778
Yong, R. N., Nakano, M., & Pusch, R. (2012). Environmental soil properties and behaviour. CRC Press.